RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2013

Mathematics (General)

Paper: I

FIRST YEAR

Date : 17/12/2013 Time : 11am – 2pm

(Use a separate answer book for each group) Group – A

Answer any five questions of the following:	(5×5)
1. State D' Moiver's theorem. Apply it to solve the equation $(x+1)^6 = (x-1)^6$.	(1 + 4)
2. Prove that $\sin\left[i\log\frac{a-ib}{a-ib}\right] = \frac{2ab}{a-ib}$.	(5)

2. Prove that
$$\sin\left[i\log\frac{a-ib}{a+ib}\right] = \frac{2ab}{a^2+b^2}$$
.

3	Show that the roots of the equation –		+	=	$=\frac{1}{(a,b,c>0)}$ are all real. ((5)
	1	x – a	x – b	$\mathbf{X} - \mathbf{C}$	X	· /

- State Rolle's theorem in connection to theory of equations. 4. a)
 - If the equation $3x^4 + 4x^3 60x^2 + 96x k = 0$ has four real and unequal roots, show that b) 32<k<43. (4)
- Solve the equation by Cardan's method: 5. $x^3 + 3x^2 - 15x - 52 = 0$.

If ω is one of the imaginary cube roots of unity, prove that $a + b\omega + c\omega^2$ is a factor of $\Delta = |b c a|$. 6. c a b

Hence or otherwise show that
$$\Delta = -(a^3 + b^3 + c^3 - 3abc)$$
. (2+3)
Find the rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \end{bmatrix}$. (5)

Find the rank of the matrix $\begin{vmatrix} 2 & 4 & 3 & 5 \end{vmatrix}$. 7.

$$\begin{bmatrix} -1 - 2 & 6 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 - 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 \end{bmatrix}$$

From the matrix equation AX = B, find X, Where $A = \begin{vmatrix} 0 & 1 - 1 \\ 1 & 1 \end{vmatrix}$ and $B = \begin{vmatrix} 1 \\ 7 \end{vmatrix}$. 8. (5)

Group – B

Answer **any five** questions of the following:

- Show that the following mapping f is injective but not subjective, where $f: N \rightarrow N$ defined 9. a) by $f(n) = n+1, n \in N$.
 - Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 3x + 1, x \in \mathbb{R}$. Prove that f^{-1} exists and find f^{-1} . b)
- If H, K are subgroups of a group (G, 0), then prove that $H \cap K$ is also a subgroup of (G, 0). (3)10. a) Give an example to show that the union of two subgroups of a group G is not necessarily a b) subgroup of G. (2)
- 11. a) Give an example of an abelian group.
 - Show that a non empty subset H of a group (G, 0) is a subgroup of (G, 0), if and only if b)
 - $a, b \in H \Rightarrow aob \in H$ and i)

ii)
$$a \in H \Longrightarrow a^{-1} \in H$$
.

- 12. a) Find the units in the ring $(Q, +, \cdot)$.
 - If R is a nontrivial ring with unity I, then show that $0 \neq I$. Furthermore give an example of a b) ring where 0 = I. (2+2)

 (5×5)

Full Marks: 75

(1)

(5)

a b c

- (2)

(3)

(1)

(4)

(1)

- 13. Determine the eigen values of $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$ and the eigen vectors corresponding to the positive eigen value of A. (3+2)
- 14. Find the matrix associated with the real quadratic form: $x^2 + y^2 z^2 + 2xy + 2zx 2yz$. Find the eigen values of this matrix and hence find the nature of the real quadratic form. (5)
- 15. Verify whether S_1 and S_2 are subspaces of the real vector space \mathbb{R}^3 , where

i)
$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x - 3y + 4z = 0\}$$

ii)
$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2\}.$$

16. Use replacement theorem to find a basis of the real vector space R³ containing the vectors (1, 1, 0) and (1, 1, 1).

Answer any five questions of the following :
17. a) Find the domain of definition of the following function
$$f(x) = \log |4 - x^2|$$
.

.

b) Show by
$$\in -\partial$$
 definition of limit that $\lim_{x \to 3} \frac{1}{x+3} = \frac{1}{6}$. (3)

- 18. a) State Leibnitz's theorem on successive differentiation.
 - b) If $y = \cos(10\cos^{-1}x)$, show that $(1-x^2)y_{12} = 21xy_{11}$. (3)
- 19. a) If f(x) = 2|x| + |x-2|, test whether f is continuous at x = 2. Find $f^{1}(2)$, if possible. (4)
 - b) Give an example of a real valued function which is nowhere differentiable. (1)

20. State Euler's theorem on homogeneous function. If $u = 2\cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, apply Euler's theorem

to prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \cot \frac{u}{2} = 0.$$
 (2+3)

21. a) Verify that the double limit

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x+y}{x-y}$$

does not exist.

b) Prove that the function
$$f(x, y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & \text{when } x \neq y \\ 0, & \text{when } x = y \end{cases}$$

is not continuous at (0, 0).

22. a) State the schwartz's theorem on commutative property of mixed second order derivatives.

b) If u be a homogeneous function of x and y of degree n, then show that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u.$$
(3)
(assume: $\frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial^{2} u}{\partial y \partial x}$)

- 23. Find the radius of curvature at the point (r,θ) on the cardiode $r = a(1-\cos\theta)$ and show that it varies as \sqrt{r} . (4+1)
- 24. Show that the pedal equation of the parabola $y^2 = 4a (x + a)$ with respect to the origin is $p^2 = ar$. (symbols have their usual meaning). (5)

(3) (2)

(2)

(5)

 (5×5)

(2)

(2)